The intelligent energy system of the future

Mikael Togeby
Ea Energy Analyses
www.eaea.dk

Presented at Ærø Renewable Event 2006

Visions for the electricity system

• DOE (2003): Grid 2030

• EPRI (2003): Electricity sector framework

for the future

EU (2006):
 SmartGrids

Key features

- Much more communication:
 - Every node can interact with every other node
 - A node can be a large power plant, a micro power plant, a transformer, an end-user, an equipment
 - Real-time markets
 - Quality of supply adapted to individual needs
 - Demand and production are optimised to real-time prices

System-wide intelligence

- Wide area monitoring and protection systems (WAMS/WAPS) are used to improve security of supply
- Prediction of failures
- Self-heeling

New technology

- Micro generation
- FACTS (Flexible AC Transmission System) can control the flow in the network
- Superconducting cables
- Energy storage
- Fuel cells
- Hydrogen, electric or hybrid automobiles

2006: Substantial parts of the electricity system is liberalised

- Financial market, day-ahead and hourahead power market and, e.g. Nord Pool
 - Strong competition hour by hour
 - Large volume traded
- Nordic system for regulating power (NOIS)
 - Dispatching lowest cost regulating power across control areas

2006: Command and control

- Monopoly part of electricity system (40% of total costs) dominated by command and control
- Monopoly part:
 - Transport of electricity
 - Network
 - Losses
 - Ancillary services
 - Regulating power
 - Reserves
- Large potential savings:
 - Adapting demand to real-time prices
 - Including individual level of security of supply
 - Activating new generation technologies

Monopoly tariffs

- Does not reflect real-time dynamics of costs
- Two different views:
 - Collecting costs (today)
 - Activating best technology (future)

Examples of command and control

- Administrative barriers:
 - Minimum size (e.g. 10 MW)
 - Requirements of constant availability (years, not hours)
 - Requirements of individual, real-time measurements

Dynamic nodal pricing

- Prices vary
 - By time
 - By location
- May benefit small-scale generation and demand
 - Can react quickly
 - Many plants spread over the whole country
- Will create different prices for different users
 - Can to some extent be levelled out by adjusting the yearly subscription tariff

All markets with prices in real-time

- Dependent on cost structure:
 - Average price = No production
 - Dynamic prices = Production in most expensive periods
- Reduced demand:
 - Average price = No adaptation
 - Dynamic prices = Highest demand in cheapest periods

06-09-2006 Ea Energianalyse A/S 12

Consequences of dynamic prices

- Optimal timing
 - Demand
 - Heat pumps (with heat storage)
 - Micro generation (with heat storage)
 - Combined heat and power
- Reduced production in rare cases
 - Wind power
 - Photovoltaic

Conclusions

- Vision for the electricity system = More communication
 - Dynamic prices (also for monopoly costs)
- Demand:
 - Adapting demand => Reduced costs
- Production:
 - Decentralised production may benefit from nodal pricing
 - Can counteract high losses in the distribution system
 - Can be an alternative to costly network expansion