

RE Expansion and Integration Possibilities in Vietnam: Future Perspectives

- Insights from long-term power system development scenario study using the Balmorel model

November 29 / December 1, 2016 HaNoi / HCMC, VietNam

Aisma Vītiņa Ea Energy Analyses

Ea Energy Analyses

- Private company
 - Started in 2005
 - Background in the Danish Transmission System Operator, TSO
- Models
 - Balmorel: Economic expansion of large electricity systems (investment and dispatch, perfect foresight)
 - SisyfosR: Security of supply (stochastic)
- A number of power system development and RE integration projects internationally
 - China, EAPP (12 countries), Europe, Mexico, US (NE US and Eastern Canada), Vietnam

THE PROJECT: A BRIEF OVERVIEW

Goals of the project

- Develop long-term energy scenarios for the Vietnamese electricity system
 - 2016 2050
 - Many alternative scenarios: provide insights into multiple 'possible futures' and address uncertainties
 - Model-based investments
 - Focus on costs and benefits and integration of renewable energy
 - Demonstrate that the approach can be used for PDP8
- Deliver 'Outlook Report 2016-2050' based on the modelled scenarios
- Knowledge sharing and capacity-building

Project composition

- Steering group
 - MOIT
 - Danish Energy Agency
 - Danish Embassy

- Consultants
 - Ea Energy Analyses (international consultants)
 - Institute of Energy (local consultants)

The project on one page

Project status

- Fully functional Balmorel model set-up for Vietnam has been completed
 - Selected data refinements and final review in progress
 - Estimates and assumptions used for RE resource potential representation
 - RE resource quantification study (supported by GIZ) awaiting approval
- Local training sessions of the Vietnamese experts in the use of the Balmorel model carried out
- Local access and operation of the Balmorel model at the IE fully established
 - Server with full Balmorel model and database functionality set up at IE
- Set of scenarios for the Outlook Report selected
- **NB!** Preliminary results as project is still in progress!

OUTLOOK REPORT

Outlook Report: Background

- Vietnamese power system facing significant opportunities and challenges
 - Rapid demand growth expected
 - Reliance on (imported) fossil fuels and their prices with the associated CO2 emission growth
- Decisions made today will have long-lasting consequences
 - Uncertainty regarding a number of key drivers (future power demand, fuel and technology costs and availability etc.)
- Investigating the system-wide outcomes of a number of possible 'futures' can assist in making informed decisions today
 - Model-based scenario analyses provide an objective and impartial research framework

Outlook Report: Concept

- Ruel prices: IEA WED ISO PPM Ruel prices: IEA WED NPS Lower Lower PV cot
- Provide a number of alternative scenarios alongside PDP 7
 - Addressing the sources of future uncertainties (fuel prices, power demand)
 - Analysing the system-wide effects of alternative policies (e.g. different RE goals, CO2 prices, alternative support schemes)
- Illustrate and quantify the possible alternative futures
 - System capacity, generation, transmission
 - Power prices, fuel use, CO2 emissions
- Provide informed insight on the potential alternatives and give inspiration / support to the next PDP development process

THE BALMOREL MODEL: A BRIEF OVERVIEW

Balmorel model

- Least-cost optimization model
 - Investment optimization for generation and transmission
 - Economic dispatch
 - Covers power, heat and transmission, as well as storage
- First version developed in 1999-2001
 - Continuous improvements
- Transparency
 - Open source: www.balmorel.com
 - Requires a commercial solver: GAMS
 - GAMS = General Algebraic Modeling System, a high-level modeling system for mathematical programming problems (www.gams.com)
- Flexibility
 - Possible to implement new policies, policy objectives, technologies and other considerations
- Transferability
 - Adaptation with local data

The Balmorel model

See: www.eaea.dk/themes/111_theme_modelling_of_energy_systems.html for project description and reports

The Balmorel model

Balmorel VietNam model

- Process started in July 2015
- Draft model development and training commenced in October 2015
- Continuous data and model updates and operator training
 - July 2016: Data update and Balmorel operator training
 - PDP7 data implemented, further updates
 - October 2016: Data and model update and Balmorel operator training Local server setup completed
 - PDP 7 final data updates and scenarios

INPUT DATA AND SCENARIOS

VietNam Balmorel model: Input data

- The Balmorel VietNam model is fully functional
 - Populated with the best data available
 - Estimates and assumptions used where accurate data not available / pending
- Key input data categories in the model:
 - PDP VII Revised generation expansion plan per individual units
 - Large hydro reservoir plants represented individually, along with their reservoir storage capacity
 - Existing regional transmission and committed expansion plans
 - Power demand projections as per PDP VII Revised and extrapolation towards 2050
 - Gradually decreasing demand growth rate towards 2050
 - Regional hourly load profiles
 - Domestic coal and natural gas resource potentials and costs
 - Fuel costs: existing and projections towards 2050

VietNam Balmorel model: Input data (2)

- Technology 'catalogue' with the characteristics and costs of existing and projected power generation technologies towards 2050
 - Learning curves for cost / performance most notably represented for wind and solar PV
- RE resources represented
 - Small hydro regional potentials, large hydro individual investment candidates and the respective inflow profiles
 - Biomass national potential estimates per type and technology, main feedstock costs
 - Wind speed / solar PV production hourly profiles for wind and solar PV per location / region
 - Wind and solar PV national resource potentials currently based on estimates

Core scenario descriptions

PDP 7

- PDP 7 capacity exogenous until 2030
- No investments

- Runs in 5-year periods until 2030
- No RE goals
 - The current results indicate
 RE goals cannot be met in
 2030

Main

- PDP 7 capacity exogenous until 2020
- Investments allowed
 - Generation from 2020
 - Transmission from 2030
- Runs in 5-year periods until 2050
- RE goals in line with RE Strategy

Scenarios: Overview

 Model given 'freedom to optimize' thereafter

Dispatch model run only

PDP 7

Scenarios: Overview

Demand projections in the scenarios

- Main
 - PDP 7 revised until 2030
 - Gradually decreasing growth rate thereafter (reaching 0% in 2050)
- High Demand
 - As per PDP 7 revised
 - Gradually decreasing growth rate thereafter (reaching 0% in 2050)
- Low demand
 - Based on WWF / IES study
 - BAU projection

RE goals in the scenarios

Main

- RE goals in line with the RE Strategy
- Unrestricted
 - No RE goals
 - The BAU scenario

Fuel price and policies in the scenarios

- Low NG price
 - Natural gas price (LNG imports) follow the IEA
 WEO 2015 450 PPM scenario
- No Coal
 - No investments in coalfired technology allowed as of 2035

CO2 price in the scenarios

- CO2 price
 - 7 USD/tonne in 2020, 20
 USD/tonne thereafter
 - No RE goals as CO2 price is a policy alternative

KEY TAKE-AWAYS

Balmorel scenario analysis: Key take-aways

- PDP VII Revised might not be able to meet the RE Strategy goals in 2030
- Importance of the planning assumptions for the development of the power system – and assessment of what is 'feasible'
 - Natural gas price
 - Demand growth
 - RE resource potentials
- Importance of transmission capabilities in RES integration
- Following the RE Strategy targets will achieve the Green Growth Strategy (GGS) goals in the long-term
 – GGS goals not met in the short- to medium-term

Balmorel scenario analysis: Key take-aways (2)

- Implications of different policy choices
 - RE targets do not affect the rest of the system -> more limited impact on CO2 emissions
 - Policies addressing CO2 emissions / costs directly could more efficiently achieve both RE and CO2 emission reduction ambitions
 - Intuitively, 'No Coal' scenario identifies the most critical driver of CO2 emissions
- Economic results indicate RE goals could be achieved at a relatively modest additional cost compared to the BAU scenario ('Unrestricted')
 - Higher CapEx outweighed by lower fuel expenditure
- Current results indicate that the Vietnamese power system could succesfully integrate very significant shares of RES generation

NEXT STEPS

Next steps

- Complete data refinement and review, most importantly:
 - RE resource potentials
 - Demand projections towards 2050
- Produce the final set of modelled scenario results
- IE / local experts to continue use of the Balmorel model to achieve independent operational proficiency
- Outlook Report to be published in May 2017

RE resource mapping study

- Supporting activity aimed at quantifying the wind resource potential in Vietnam supported by GIZ
 - Scheduled to commence shortly
- Outcomes of this study to be used in the current project
 - Wind resource potential estimates per region and areaspecific wind power investment costs
 - Solar PV resource potential estimates per region and areaspecific solar PV investment cost, as well as hourly production time series
 - Based on the outcome of the World Bank's study to be completed by December 2016
- Expected project completion: April 2017

Thank you!

Aisma Vītiņa

E-mail: av@eaea.dk Mobile: +45 6039 1702

Ea Energy Analyses

Frederiksholms Kanal 4, 3. th. 1220 Copenhagen K, Denmark www.ea-energianalyse.dk

