Demand as Frequency Controlled Reserve

Jacob Østergaard

joe@oersted.dtu.dk

Prof., head of centre

Centre for Electric Technology (CET), Ørsted*DTU

Ørsted*DTU

Center for Elteknologi

On the one hand...

- Demand and production have to be in balance
 - Time horizon: Seconds Minutes
- Balance have to be quickly reestablished after loss of a power plant or transmissions corridor
 - Today covered by fast frequency activated reserves
 - Mainly from power plants or import

Ørsted*DTU

Center for Elteknologi

On the other hand...

- A large share of the load can be disconnected in a short period without problems
 - Heating
 - Freezers
 - Refrigerators
 - Circulation pumps
 - Coffee machines
 - Tumble driers
 - Washing machines

- Dish washers
- Industrial loads, e.g. with thermal storage
- Water tower, dewatering
- Light in greenhouses
- UPS units

Ørsted*DTU

Center for Elteknologi

Demand controlled by the frequency can provide a more efficient and less expensive power system

- Potentially momentary response essential in frequency stability maintenance
- Flexible and distributed good for stability enhancement
- Potentially low investment and maximal use of available resources

Ørsted*DTU

Center for Elteknologi

But open questions exists...

- How should it be designed?
 - Set-points
 - Disconnection and reconnection
 - Different systems (DK east / DK west)
- Qualitative benefits for the system?
- Communication or no communication?
- Monitoring of the reserve?
- Business model (marked)?
- ...

Ørsted*DTU

Center for Elteknologi

Oktober 30th 2005, 04:16: Loss of Kontek

New electronic provides new possibilities

 The frequency is the same in the whole interconnected power system, e.g. in Nordel or UCTE A chip of the size of a credit card can measure frequency and disconnect load in milliseconds – far faster than production can be increased

PSO project "Demand as Frequency Controlled Reserve"

- 2 year project started April 2006
- Financed by PSO (Public Service Obligations) managed by Energinet.dk
- Project partners
 - Centre for Electric Technology, Techinal University of Denmark
 - Ea Energianalyse
- Objective: analysis, assessment and system design
- If success, followed by a demonstration phase

Ørsted*DTU

Center for Elteknologi

Project participants

- Project group
 - Prof., head for centre, Jacob Østergaard, CET
 - Ass. prof. Zhao Xu, CET
 - Partner, Michael Togeby, Ea
 - Partner, Kaare Sandholt, Ea
- Support from Pacific Northwest National Lab. (PNL), US
- Advisory group
 - Energinet.dk, NESA, DONG Energy, Stattnet (NO), Svenska Kraftnet (SE)
- Following group
 - Coordination with other PSO-projects

Ørsted*DTU

Center for Elteknologi

Work Packets

- 1. Eksplorative analysis of system design for demand as frequency reserve
- 2. Dynamic simulations of concepts
- 3. Monitoring of the variable reserve
- 4. Strategy and practical implementation
- 5. Conclusion and evaluation

Ørsted*DTU

Center for Elteknologi

11.04.2003

Thank you for the attention!

- For further information please visit:
 - www.oersted.dtu.dk/cet
 - www.eaea.dk
- Or contact us:
 - Jacob Østergaard, CET (joe@oersted.dtu.dk)
 - Zhao Xu, CET (zx@oersted.dtu.dk)
 - Mikael Togeby, Ea Energianalyse A/S (mt@eaea.dk)
 - Kaare Sandholt, Ea Energianalyse A/S (ks@eaea.dk)

Ørsted*DTU

Center for Elteknologi

