

Danish Energy Agency

劉鵬

NTB Energy Masterplan Propelling West Nusa Tenggara to Lead Indonesia's Energy Transition

Report Launch – 7th December 2023

- 1. Introduction
- 2. Current conditions
- 3. Modelling setup
- 4. Projections of energy demand
- 5. End-use development
- 6. Power sector development
- 7. Financial estimates on power sector
- 8. Conclusions and recommendations

Introduction

Navigating the Path to Net-Zero Emissions

- **Global imperative** for net-zero emissions: pivotal for social, environmental, and economic sustainability
- **NTB's ambitious goal**: achieve net-zero emissions by 2050, announced during COP26
- Net-zero emissions (NZE) in NTB would help mitigate climate change, foster economic growth and improve overall living conditions
- Need for sustained global efforts, starting with local initiatives

Navigating the Path to Net-Zero Emissions

- The NTB Energy Masterplan focuses on an energy strategy until 2050
- LEAP and Balmorel models are utilized for demand and power sector analysis

Two scenarios:

- Baseline representing current conditions
- NZE with a net-zero target for NTB by 2050
- **Financial analysis** examines power system costs and feasibility of solar and wind plants
- **Comprehensive approach** balances various factors that need to be considered for energy planning

Current conditions

Current Energy Profile of NTB

Energy Mix of Electricity Generation in NTB (kWh Production)

Overview of Electric Power Systems

- Lombok 150 kV, Tambora 70 kV & 150 kV systems.
- Various sources: Coal, natural gas, diesel, hydro.

Energy Mix for Electricity Generation

- Dominated by diesel, transitioning to biodiesel.
- Gradual shift from coal to biomass co-firing.
- Minor contributions from solar and hydro power.

Projected Electricity Demand (2021-2030)

- Anticipated growth in household, business, public, and industrial sectors.
- Total demand growth: 7.2% to 9.2% annually.

Infrastructure Development and Renewable Energy

Capacity potentials used for the power sector analysis (MW)			
Source	Lombok	Sumbawa	
Bioenergy*	297	19	
Geothermal	100	75	
Hydro	26	26	
Municipal waste	32	0	
Wind onshore	938	1,667	
Solar PV	1000	9,628	

*Bioenergy predominantly refers to biomass

Development Plans (2021-2030)

- Planned projects include coal, gas, hydro, solar, biomass, and geothermal
- Emphasis on reducing coal-fired power with gas

Renewable Energy Potential

- Geothermal, hydroelectric, solar, wind, and biomass
- Exploration of wave and tidal energy

Challenges and Initiatives

- Barriers: Uncertain gas and coal supply, long commissioning process, technical challenges in integrating renewables
- Initiatives: Subsidies for electric vehicle adoption, encouraging alternative technologies like hydrogen

Sector-specific development

Residential Sector

 Shift to LPG for cooking and promotion of electric stoves

Commercial Sector

- Tourism sector's growth potential is significant
- Increases hotel occupancy rates and trade Industrial Sector
- Emphasis on industrialization, growth expected in formal and non-formal industries
- Focus on downstream policies for added value

Sector-specific development

Transportation Sector

- Highest emission contribution
- Heavily dependent on fossil fuel with government subsidies
- Push for electric vehicle adoption, charging station initiatives

Others (Mining, Agriculture, Construction)

- Contribute significantly to NTB's economy
- Policies aim to increase the value of raw materials, boost economic growth, generate employment and enhance state revenues

Challenges going forward

- Affordable power supply
- Uncertain gas and coal supply
- Long process for commissioning
- **Technical challenges** in renewable energy integration.
- Post-COVID economic recovery, slow progress in projects
- Just and inclusive energy transition.

Modelling setup

38 10

-909

9

Energy demand modelling using LEAP

- LEAP facilitates comprehensive energy planning, tracking production, consumption, and resource extraction in all sectors.
- It enables scenario-based analyses, evaluating policy impacts, technological shifts, and changes in energy patterns.
- Used nationally in Indonesia, LEAP contributes to development plans via mapping and projecting final end-use energy consumption.

Power sector modelling using Balmorel

- Supports technical and policy analyses of power systems
 - Optimises:
 - least-cost dispatch and capacity expansion
 - generation and transmission
 - Good representation of RE variability

Model linking and scenarios

- Similar approach as used in the national level modelling
- Allows for a study of the whole energy sector
- Scenarios:
 - Baseline Scenario: Follows existing trends, aligns with national policies, and targets net zero emissions by 2060 for power sector with no specific provincial targets.
 - NZE Scenario: Aims for carbon neutrality in NTB's energy system by 2050, prioritizing electrification and allowing power sector decarbonization by 2048.

Projections of energy demand

Input data – Demographics and macroeconomics

NTB GDP structure in 2021

	Lombok		Sumbawa		
Sector	Billion IDR	%	Billion IDR	%	-
Industry	3,774	7.1	709	1.7	P
Commercial	25,753	48.4	12,230	28.7	P
Transportation	3,203	6	1,456	3.4	G
Mining	2,581	4.9	14,267	33.5	G
Agriculture	11,022	20.7	10,899	25.6	
Construction	6,756	12.7	3,028	7.1	
Other	128	0.2	52	0.1	
Total	53,217	100	42,641	100	

NTB Population, GDP and GDP per capita in 2021

Туре	Units	Lombok	Sumbawa	Total
Population	1,000 people	3,809	1,581	5,390
Population Growth	%	1.34	1.26	1.31
GDP	Billion Rp	53,659	42,639	96,29
GDP per capita	Million Rp/person	14.1	27	17.8

Input data – Fuel consumption

Oil Consumpt	tion (Kilo li	itres)		LPG Consumption (Ton)		Coal Consumption (ton)					
Oil Products	Lombok	Sumbawa	Total	Sector	Lombok	Sumbawa	Total	Sector	Lombok	Sumbawa	Total
Avtur	7,002	778	7,780					Davisar			
Gasoline	282,793	148,099	430,892	Residential	97,355	23,894	121,249	Power Generation	447,184	212,501	659,685
Kerosene	5,666	1,688	7,354	Industry	281	69	351	Minina	_	493.889	493.889
Diesel	363,684	406,256	769,940					g		199,009	100,000
Fuel Oil	63,855	22,610	86,465	Commercial	523	129	651	Industry	78,630	14,977	93,607
Total	723,000	579,431	1,302,431	Total	98,159	24,092	122,251	Total	525,814	721,367	1,247,181

- Oil consumption is provided by DG Oil and Gas for whole NTB (split between Lombok Sumbawa based on local feedback and assumptions)
 - Gasoline: Mostly road transport, shipping and industry
 - Kerosene: Residential and industrial sectors
 - Diesel: Mostly road transport but also shipping, industry, mining and power generation
 - Fuel oil: Power sector
- LPG consumption is calculated based on available data from DG Oil and Gas
- Coal consumption is based on DG Mineral and Coal for power generation and mining, while industrial data is based on BPS Industry Survey

Assumption on GDP and population growth

- GDP growth is based on Bappenas data and population growth is based on national and local historical trends
- Economic activity is expected to bounce back from COVID-19, **increase steadily until peak in 2035**, followed by a 5-year plateau which will eventually lead to a reducing rate until 2050
- Population growth is currently much higher than the national average and the growth is expected to slow down until reaching the current national levels of 0.7% in 2050

Other assumptions for end-use

- Fuels: Shifting toward biodiesel and biogasoline on certain annual rates
 - NZE assumes full substitution by 2050 to phase out conventional diesel and gasoline
- **Residential sector**: Gas stoves replacements with electric and biogas and efficiency improvements for electric appliances
 - Kerosene is phased out in both scenarios by 2030 and LPG consumption is eliminated in NZE by 2050
- **Commercial sector**: Substitution of diesel with electricity and biodiesel
 - Energy efficiency measures via state-of-the-art equipment, machineries and improved building energy management results in 25% reduction in energy demand by 2050
- Industrial sector: Substitution of diesel, coal and LPG to electricity and bioenergy and technological advancements
 - Energy intensity declines steadily to 25% by 2050 based on state-of-the-art or retrofitted machineries and boilers, heat pumps, as well as optimised process designs and circularity
- Transport sector: Electrification, biofuels and BEV efficiency improvements
 - NZE assumes all road transport vehicles, i.e. cars, motorbikes, trucks and busses to run solely on electricity and hydrogen by 2050

End-use development

Total final consumption A holistic paradigm shift

- Fossil fuels: Gasoline, avtur, kerosene, diesel, LPG and coal
- Biofuels: Biogas, biogasoline, biomass, biodiesel and bioavtur
- Constantly increasing demand with NZE presenting lower levels already by 2030 due to electrification and energy efficiency measures
- Electricity constitutes 40% and 68% of total final consumption in 2050 for Baseline and NZE scenarios respectively

Total final consumption

Sectoral comparison

• Transport sector is the most energyintensive throughout 2050 in both scenarios, followed by the residential

 Industrial activity showcases a share increase of 5% between 2025 and 2050, reaching equal levels with others (agriculture, mining and construction)

Commercial sector rises fivefold

Total electricity consumption – Driving the transition Comparison with RUPTL21 until 2030

- RUPTL21 has been used to calibrate the electricity consumption development of end-use sectors for Baseline scenario
- Baseline follows the moderate PLN scenario until 2025 and reaches in-between moderate and optimistic in 2030
- NZE surpasses all other scenarios post 2026, mainly due to higher BEV penetration in transport

Total electricity consumption – Driving the transition A sectoral comparison

- **Constant electricity growth** in all sectors with transportation enjoying the largest increase
- Residential sector remains the highest consuming in both scenarios and for all years
- NZE scenario consumes 21.8 TWh of electricity which is 5.8 TWh higher than Baseline
- Electric appliances and machineries, electric boilers and heat pumps, as well as electrification of road transport mainly for light-duty vehicles contribute to total demand

Residential sector Clean cooking and energy efficiency as first fuel

- Electricity drives the residential demand reaching 8.6 and 7.6 TWh respectively in Baseline and NZE
- LPG which is consumed in gas stoves for cooking is steadily phased-down, substituted mainly with electricity but also biomass in NZE scenario
- Kerosene is currently used but at very low levels and is phased out before 2030 in both scenarios
- By 2050, NZE assumes that all households have access to clean cooking
- Higher energy efficiency results from more efficient appliances and cooking equipment

Commercial sector Exploring low-hanging fruits

- Commercial sector encompasses various services, trading activities and businesses
- Commercial applications are expected to grow
 following the provincial economic development
- Relative shares of total annual consumption of the different subsectors remain at similar levels between 2025 and 2050, however, hospitality sector is anticipated to grow faster than other services
- NZE scenario showcases a 17% decrease against
 Baseline in 2050 due to more efficient appliances, materials and equipment used, along with improved energy management in buildings

Commercial sector Exploring low-hanging fruits

- Over 85% of the fuel mix is constituted by electricity already by 2030 in both scenarios and reaches more than 90% in 2050
- Baseline sees a steady but slow uptake of diesel and LPG in both Lombok and Sumbawa which are gradually phased-down in NZE via substitution with electricity and biodiesel

Industrial sector Electrification and biofuels pave the way

- Industrial activity is relatively low in NTB and constituted about 7% of total GDP for Lombok and 1.7% for Sumbawa in 2021
- Some of the key industries are food and beverage, wood, metal and non-metal
- The food sector consumes more than 60% of industrial fuel consumption, followed by non-metals at roughly 25%
- Baseline total fuel consumption raised more than fourfold compared to 2025 levels, while NZE presents a 17% decrease against Baseline in 2050 via electrification and installation of state-ofthe-art equipment and machineries

Industrial sector Electrification and biofuels pave the way

- Baseline scenario relies heavily in fossil fuels (i.e. diesel, LPG and coal) throughout 2050 with diesel being the main driver which is constantly higher than electricity consumption
- NZE scenario presents higher electrification of various lowtemperature industrial processes, fuel switching toward biofuels (mainly biodiesel and biomass) and higher energy efficiency

Transportation sector Domination of electric vehicles

- Gasoline, diesel and B30 have the highest demand today
- Motorcycles dominate the mobility market with more than 1.6 million listed in 2021 and thus most energy-intensive in all years
- Electric vehicles anticipate a large growth in the upcoming years and policies are already in place, e.g. subsidies and VAT reductions
- NZE sees a peak in energy consumption in 2040 and declines thereafter due to higher electrification and technological advancements
- In 2050, the two scenario present a 5.3 TWh difference

Transportation sector Domination of electric vehicles

- Baseline inherits some of the measures and policies adopted in NZE, in a less optimistic approach but in line with national ambitions
- NZE illustrates a much larger penetration of BEVs along with higher hydrogen and biofuel uptake
- By 2050, NZE assumes road transport (cars, motorbikes, trucks and busses) to run solely on electricity and hydrogen, while aviation and shipping shift to biofuels e.g. biodiesel, biogasoline and biojetfuel

Others sector

Shifting to alternative fuels – the case of Lombok

- Others include agriculture, construction and mining
- Agriculture and mining are of very high and strategic importance and occupy a large number of the population
- Mining sector which is most active in Sumbawa is assumed to remain relatively stable in terms of consumption as there is only one operating facility at the moment
- Diesel and gasoline are the ascendant fuels which are highly substituted with biofuels in the NZE scenario

End-use CO₂ emissions Achieving net-zero for end-use sectors are possible

- Transportation is by far **the highest emitting sector throughout 2050 in both scenarios** followed by the residential and others sector
- Already by 2030, a 20% reduction between
 Baseline and NZE is feasible, mainly driven by BEV sales and more efficient appliances
- NZE sees a carbon emission peak in 2025 which is only marginally higher than 2030
- In 2050, Baseline reaches 4 Mt with transportation taking up 65%, while NZE has roughly 60 kt left linked with aviation
- Full decarbonisation of transportation would require negative emissions via BECCS or the introduction of e-fuels, e.g. e-jet fuel

Electricity demand

- - Baseline Classic demand
- – Baseline EV

- - Baseline Hydrogen production
- NZE Classic demand
- -----NZE EV

Electricity Consumption (GWh)			
Sector	Lombok	Sumbawa	Total
Residential	1,037	473	1,510
Commercial	476	125	602
Industry	89	89	179
Total	1,603	688	2,290

- By 2050 the total electricity demand increases 6-fold in baseline and 9-fold in NZE
- Different level of

electrification of transport

contributes most to the

difference between scenarios.

Financial inputs for the power sector

Investment costs (USD19/MW)				
Technology	2020	2030	2040	2050
Solar PV (large)	0.61	0.43	0.38	0.32
Wind Onshore	1.39	0.73	0.67	0.62
Biomass	1.85	1.69	1.59	1.48
Gas combined cycle	0.94	0.89	0.86	0.82

- Fuel prices calibrated to reflect DMO prices
- Investment cost for capacity expansion based on Indonesia technology catalogue (2021)

Capacity Expansion

Extensive short- and long-term capacity investments, especially in solar and wind

- Capacity expansion form 2026
- By 2050, both scenarios project solar and wind as primary sources
- 13 GW of RE in the NZE scenario by 2050
 - Solar PV 9 GW (90% in Sumbawa)
 - Wind 2.6 GW
- No decommissioning = existing coal and gas assets still a part of the fleet (can be considered for retrofitting in the future)
- Hydropower, bioenergy, and geothermal potential fully utilized by 2050 in both scenarios.

Capacity Expansion Extensive short- and long-term capacity investments, especially in solar and wind

- Capacity expansion form 2026
- By 2050, both scenarios project solar and wind as primary sources
- 13 GW of RE in the NZE scenario by 2050
 - Solar PV 9 GW (90% in Sumbawa)
 - Wind 2.6 GW
- No decommissioning = existing coal and gas assets still a part of the fleet (can be considered for retrofitting in the future)
- Hydropower, bioenergy, and geothermal potential fully utilized by 2050 in both scenarios.

Electricity Generation Renewable energy dominates generation

- By 2050
 - Generation grows 10-fold in both scenarios
 - NTB is a net surplus state (when generation is compared to NTB electricity demand)
- In line with capacity expansion, most of this increase in generation comes from solar and wind.
- Share of RE is rapidly growing in both scenarios.
- Fossil fuel consumption goes down completely in NZE
- Share of renewables reach 99% in 2045 in NZE
 - Showing that RE development is inherent to a CO₂ target and might not require separate goal.

Electricity Generation Renewable energy dominates generation

- By 2050
 - demand increases by 6 times in baseline and 9 times in NZE
 - Generation grows 10-fold in both scenarios
 - NTB is a net surplus state.
- In line with capacity expansion, most of this increase in generation comes from solar and wind.
- Share of RE is rapidly growing in both scenarios.
- Fossil fuel consumption goes down completely in NZE
- Share of renewables reach 99% in 2045 in NZE
 - Showing that RE development is inherent to a CO₂ target and might not require separate goal.

CO₂ emissions Ambitious CO₂ reduction is achievable

- CO₂ emission reduction by 2050 in both scenarios
- Emission per unit of electricity produced also goes down
- Power sector emission down to zero by 2048 in NZE to allow reduced decarbonization of other sectors when electrification is the solution
- Coal main source for emissions in power sector
- Decarbonized electricity supply in NTB also means lower emissions for regions importing electricity from NTB

Increased interconnections

Transmission improves resource utilisation and supports national decarbonisation

Battery storage capacity Storage required for enhanced solar utilisation and flexibility

- Increasing battery storage capacity important to **better utilize solar** resource of Sumbawa
- This can include large battery projects and hybrid solar and wind projects with storage
- Allows for shifting supply to higher load hours which helps reducing requirement for peaker capacity (usually thermal)

Increasing VRE and storage A transformation of the energy dispatch and system operations

■ Coal ■ Natural Gas ■ Other ■ Bioenergy ■ Hydro ■ Solar PV

Increasing VRE and storage A transformation of the energy dispatch and system operations

Increasing VRE and storage A transformation of the energy dispatch and system operations

Electric vehicle charging Smarter charging enhances system flexibility

 System flexibility is important when transformed to a variable renewable energy dominant system

• EVs storage increases flexibility with

shifting time of charging based on supply

- more charging around peak solar hours = better resource utilization and reduced stress during evening peak.
- Important to consider charging infrastructure planning, development of charging technology and consumer awareness

Financial estimates

Total power generation costs System costs set to fourfold by 2050 in both scenarios

- By 2050 annual system cost in baseline reaches 1.75 bn\$ compared to 1.84 bn\$ in NZE
- Four-fold increase is lower compared to demand increase (6-fold in baseline and 9-fold in NZE)
- Fuel cost in NZE lower due to reduced coal and gas consumption, but capital cost is higher due to increased capacity

Lower generation costs in NZE

Average generation cost in the medium term is higher in baseline

- **BPP reduced significantly in both scenarios** due to the increased contribution from low cost solar and wind
- VREs support decarbonization and reduce overall cost of meeting the increasing demand

CO₂ costs impact system costs System costs in NZE lower than Baseline when including CO₂ costs

- Cost of CO2: 38 USD/t CO2 in 2030, 104 USD/t CO2 in 2040 and 151 USD/t by 2050
- After 2045 NZE costs less than baseline despite a much higher demand
- CO2 cost aims to reflect the impact of emissions on society

Financial feasibility of solar and wind 2030 NZE scenario

Conclusions and recommenddations

Total CO₂ emissions from the energy sector Achieving net-zero by 2050 for energy sector in NTB is theoretically possible

Pathway to a Net Zero Emissions Energy System Key Steps and Investments for a Sustainable Energy Transition

For the end use demand side:	Net Zero Emissions (NZE) scenario requires long-term targets to shape policies				
	Sector-specific policies to enhance energy efficiency				
	High electrification of all sectors where possible starting off low-hanging fruits				

Need to ensure **sustainable use of bioenergy**

Support businesses and industries in their transition, including energy audits and incentives for fuel switching

Pathway to a Net Zero Emissions Energy System Key Steps and Investments for a Sustainable Energy Transition

For Transition requires reliable resource assessments and financial incentives

A **clear institutional set-up** needed for development of renewable power

Investments needed in **transmission and storage** for a **clean and flexible** system

Future power system operations necessitates grid reinforcement with smarter technology to ensure security and reliability

Initially **high capital investment** needed, but will result in **lower per unit cost in long-term**

power sector:

Concluding remarks

Achieving a Net Zero Emissions scenario at low cost is feasible.

It is demanding, requiring technological innovation, substantial investments, and operational shifts.

The solution requires a continued holistic and collaborative approach, considering the system's various dimensions and limitations.

This study offers initial steps and directional choices, guiding the province toward an enhanced energy framework for a significant positive impact.

U Hopefully, this spurs more ambitious development contributing to a sustainable future for the world.

Terima Kasih!

Niken Arumdati Dinas ESDM Provinsi NTB arumdati@gmail.com

Konstantinos Athanasiou Danish Energy Agency ksath@ens.dk

> Anant Atul Visaria Ea Energy Analyses aav@eaea.dk